图论Tarjan算法笔记
最近研究了一下图论【其实是因为loli的图论题
下面就来一起学习一下有趣的Tarjan吧。。。
有向图强连通分量
在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components)。
下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达。{5},{6}也分别是两个强连通分量。
[hermit auto=”0″ loop=”1″ unexpand=”0″ fullheight=”0″]netease_songs#:27570005[/hermit]
直接根据定义,用双向遍历取交集的方法求强连通分量,时间复杂度为O(N^2+M)。更好的方法是Kosaraju算法或Tarjan算法,两者的时间复杂度都是O(N+M)。本文讲的是Tarjan算法。
Tarjan算法
Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树。搜索时,把当前搜索树中未处理的节点加入一个堆栈,回溯时可以判断栈顶到栈中的节点是否为一个强连通分量。
定义DFN(u)为节点u搜索的次序编号(时间戳),Low(u)为u或u的子树能够追溯到的最早的栈中节点的次序号。由定义可以得出,
Low(u)=Min { DFN(u), Low(v),(u,v)为树枝边,u为v的父节点 DFN(v),(u,v)为指向栈中节点的后向边(非横叉边) }
当DFN(u)=Low(u)时,以u为根的搜索子树上所有节点是一个强连通分量。
算法伪代码如下
tarjan(u) { DFN[u]=Low[u]=++Index // 为节点u设定次序编号和Low初值 Stack.push(u) // 将节点u压入栈中 for each (u, v) in E // 枚举每一条边 if (v is not visted) // 如果节点v未被访问过 tarjan(v) // 继续向下找 Low[u] = min(Low[u], Low[v]) else if (v in S) // 如果节点v还在栈内 Low[u] = min(Low[u], DFN[v]) if (DFN[u] == Low[u]) // 如果节点u是强连通分量的根 repeat v = S.pop // 将v退栈,为该强连通分量中一个顶点 print v until (u== v) }
接下来是对算法流程的演示。
从节点1开始DFS,把遍历到的节点加入栈中。搜索到节点u=6时,DFN[6]=LOW[6],找到了一个强连通分量。退栈到u=v为止,{6}为一个强连通分量。
返回节点5,发现DFN[5]=LOW[5],退栈后{5}为一个强连通分量。
返回节点3,继续搜索到节点4,把4加入堆栈。发现节点4向节点1有后向边,节点1还在栈中,所以LOW[4]=1。节点6已经出栈,(4,6)是横叉边,返回3,(3,4)为树枝边,所以LOW[3]=LOW[4]=1。
继续回到节点1,最后访问节点2。访问边(2,4),4还在栈中,所以LOW[2]=DFN[4]=5。返回1后,发现DFN[1]=LOW[1],把栈中节点全部取出,组成一个连通分量{1,3,4,2}。
至此,算法结束。经过该算法,求出了图中全部的三个强连通分量{1,3,4,2},{5},{6}。
可以发现,运行Tarjan算法的过程中,每个顶点都被访问了一次,且只进出了一次堆栈,每条边也只被访问了一次,所以该算法的时间复杂度为O(N+M)。
总结一下
(1)我们先对每一个顶点判断,如果已经被运行过了,则不动,否则进行拓展
(2)对于每一个点,我们设2个值来表示(dfn和low){low[i]表示结点i的根结点的dfn值},dfn则是结点i的时间戳
(3)在第一次顺序遍历时,dfn[u]=low[u]=++cnt,初始化序列
(4)然后将遍历到的点压入栈,并且置为已做过
(5)在整个图中枚举一条以u为右端点的边(from,to),然后判断左端点是否已经入栈,如果已经入栈,则修改low[u]:low[u]=max(low[u],dfn(to)),如果没入栈,则对其进行递归处理,返回时low[u]=min(low[u],low[to])
(6)当出现dfn[u]==low[u]时,则表明已经出现一个强联通分量,依次弹出并消除标记即可,此时cnt++,则该作用为统计联通块数量
求有向图的强连通分量还有一个强有力的算法,为Kosaraju算法。Kosaraju是基于对有向图及其逆图两次DFS的方法,其时间复杂度也是O(N+M)。与Trajan算法相比,Kosaraju算法可能会稍微更直观一些。但是Tarjan只用对原图进行一次DFS,不用建立逆图,更简洁。在实际的测试中,Tarjan算法的运行效率也比Kosaraju算法高30%左右。此外,该Tarjan算法与求无向图的双连通分量(割点、桥)的Tarjan算法也有着很深的联系。学习该Tarjan算法,也有助于深入理解求双连通分量的Tarjan算法,两者可以类比、组合理解。
求有向图的强连通分量的Tarjan算法是以其发明者Robert Tarjan命名的。Robert Tarjan还发明了求双连通分量的Tarjan算法,以及求最近公共祖先的离线Tarjan算法,在此对Tarjan表示崇高的敬意。
c++实现
void tarjan(int x)
{
dfn[x]=low[x]=++dfs_clock;
s.push(x);
for (int i=st[x];i;i=e[i].next)
{
if (!dfn[e[i].to])
{
tarjan(e[i].to);
low[x]=min(low[x],low[e[i].to]);
}
else if (!scc_in[e[i].to])
low[x]=min(low[x],dfn[e[i].to]);
}
if (low[x]==dfn[x])
{
++scc_tot;
while(1)
{
int now=s.top();
s.pop();
scc_in[now]=scc_tot;
scc_size[scc_tot]++;
if (now==x) break;
}
}
}