首页 > 题解 > 网络流24题之十六 数字梯形问题

网络流24题之十六 数字梯形问题

填坑

地址:cv1913

images

样例输出 Sample Output

2 5
2 3
3 4 5
9 10 9 1
1 1 10 1 1
1 1 10 12 1 1

数据范围及提示 Data Size & Hint

66
75
77

模型

求图的最大权不相交路径及其变种,用费用最大流解决。

实现

规则(1)

把梯形中每个位置抽象为两个点<i.a>,<i.b>,建立附加源S汇T。

1、对于每个点i从<i.a>到<i.b>连接一条容量为1,费用为点i权值的有向边。
2、从S向梯形顶层每个<i.a>连一条容量为1,费用为0的有向边。
3、从梯形底层每个<i.b>向T连一条容量为1,费用为0的有向边。
4、对于每个点i和下面的两个点j,分别连一条从<i.b>到<j.a>容量为1,费用为0的有向边。

求最大费用最大流,费用流值就是结果。

规则(2)

把梯形中每个位置看做一个点i,建立附加源S汇T。

1、从S向梯形顶层每个i连一条容量为1,费用为0的有向边。
2、从梯形底层每个i向T连一条容量为无穷大,费用为0的有向边。
3、对于每个点i和下面的两个点j,分别连一条从i到j容量为1,费用为点i权值的有向边。

求最大费用最大流,费用流值就是结果。

规则(3)

把梯形中每个位置看做一个点i,建立附加源S汇T。

1、从S向梯形顶层每个i连一条容量为1,费用为0的有向边。
2、从梯形底层每个i向T连一条容量为无穷大,费用为0的有向边。
3、对于每个点i和下面的两个点j,分别连一条从i到j容量为无穷大,费用为点i权值的有向边。

求最大费用最大流,费用流值就是结果。

分析

对于规则1,要求路径完全不相交,也就是每个点最多只能被访问了一次,所以要把点拆分,之间连接容量为1的边。因为任意一条ST之间的路径都是一个解,在拆分的点内部的边费用设为点的权值,求最大费用最大流就是费用最大的m条路经。

对于规则2,要求路径可以相交,但不能有重叠,此时可以不必拆点了。为了保证路径没有重叠,需要在相邻的两个点上限制流量为1,由于顶层的每个点只能用1次,S向顶层点流量限制也为1。费用只需设在相邻点的边上,求最大费用最大流即可。

对于规则3,要求路径除了顶层每个点以外可以任意相交重叠。在规则2的基础上,取消除S到顶层顶点之间的边以外所有边的流量限制即可。

代码

 


如果你觉的这篇文章不错,分享给朋友吧!

打开微信“扫一扫”,打开网页后点击屏幕右上角分享按钮

×