首页 > 题解 > 网络流24题之二十一 最长k可重区间集问题

网络流24题之二十一 最长k可重区间集问题

填坑

地址:cogs743

«问题描述:
images
«编程任务:
对于给定的开区间集合I和正整数k,计算开区间集合I的最长k可重区间集的长度。
«数据输入:
由文件interv.in提供输入数据。文件的第1 行有2 个正整数n和k,分别表示开区间的
个数和开区间的可重迭数。接下来的n行,每行有2个整数,表示开区间的左右端点坐标。
«结果输出:
程序运行结束时,将计算出的最长k可重区间集的长度输出到文件interv.out中。
输入文件示例 输出文件示例
interv.in
4 2
1 7
6 8
7 10
9 13

interv.out

15

模型

最大权不相交路径问题,可以用最大费用最大流解决。

实现

方法1

按左端点排序所有区间,把每个区间拆分看做两个顶点<i.a><i.b>,建立附加源S汇T,以及附加顶点S’。

1、连接S到S’一条容量为K,费用为0的有向边。
2、从S’到每个<i.a>连接一条容量为1,费用为0的有向边。
3、从每个<i.b>到T连接一条容量为1,费用为0的有向边。
4、从每个顶点<i.a>到<i.b>连接一条容量为1,费用为区间长度的有向边。
5、对于每个区间i,与它右边的不相交的所有区间j各连一条容量为1,费用为0的有向边。

求最大费用最大流,最大费用流值就是最长k可重区间集的长度。

方法2

离散化所有区间的端点,把每个端点看做一个顶点,建立附加源S汇T。

1、从S到顶点1(最左边顶点)连接一条容量为K,费用为0的有向边。
2、从顶点2N(最右边顶点)到T连接一条容量为K,费用为0的有向边。
3、从顶点i到顶点i+1(i+1<=2N),连接一条容量为无穷大,费用为0的有向边。
4、对于每个区间[a,b],从a对应的顶点i到b对应的顶点j连接一条容量为1,费用为区间长度的有向边。

求最大费用最大流,最大费用流值就是最长k可重区间集的长度。

分析

这个问题可以看做是求K条权之和最大的不想交路径,每条路径为一些不相交的区间序列。由于是最大费用流,两条路径之间一定有一些区间相交,可以看做事相交部分重复了2次,而K条路经就是最多重复了K次。最简单的想法就是把区间排序后,不相交的区间之间连接一条边,由于每个区间只能用一次,所以要拆点,点内限制流量。如果我们改变一下思路,把端点作为网络中的顶点,区间恰恰是特定一些端点之间的边,这样建模的复杂度更小。方法1的边数是O(N^2)的,而方法2的边数是O(N)的,可以解决更大规模的问题。

代码

 


如果你觉的这篇文章不错,分享给朋友吧!

打开微信“扫一扫”,打开网页后点击屏幕右上角分享按钮

×